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Sound Waves In Relativistic Mzignetohydrodynamic s 

BY 
R .  P .  Kanwal 

1. htroduct ion 

The mathematical treatment of the coupled motion of hydrodynamic 

flow and electromagnetic fields has assumed grea t  importance recently. 

In the study of non-relativistic magnetohydrodynamics it is  customary 

to adopt only the quasi-equi l ibr i  um approximation to the electrodynamic 

equations in which the displacement currents  and charge accumulations 

a re  ignored. Such an analysis merely allows the possibility that the 

locities both random and ordered, of fluid elements a r e  comparable 

;th the classical  velocity of sound. 

,ade to give a covariant formulation to magnetohydrodynamics in which the 

pove-mentioned approximations a r e  not introduced. 

i terested in the motion of sonic discontinuities with such a covariant 

Drmulation. 

Recently various attempts have been 
I 

- In. this paper we a r e  

Pioneering work in the field of wave motion has been done by 

,e Hoffman and Teller [ 71 ,  Reichel [ l l ]  , Zumino [ 161, Akhieser and 

?olovin [ 1 ] , Coburn [ 2 , 3 ]  J Bruhat [ 5 1, Saini [ 121, Giere [ 61 and others 

r h e r e  a r e  some disagreements in various results obtained by these authors ,  

/e  plan to compare and extend the salient features  of their analysis in the 
I 

4 ollowing sections.  

WYOd d L I l ! a ~ ~  Relativistic hydrodynamics has been formulated and put on firm 

foundations by various authors 

lend themselves readily into covariant description. 

of these two fields becomes rather s imple.  

Edlen [ 4 1  

re-defined the equations governing the flow of a perfect relativistic gas .  

while the equations of electrodynamics 

Therefore the coupling 

Recently Thomas [ 15 1 and 

have given a discussion of relativistic hydrodynamics and 
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We couple these modified equations with those of electrodynamics. The 

total  energy tensor,  thus obtained, enables us to compare various known 

resul ts  on wave motion. 

c onduc tivi ty . 
W e  consider only those fluids which have infinite 

We consider a weak disturbance whose propagation can be repre-  

sented by a time-like hypersurface in an Einstein-Riemann space.  

using the concept of singular surfaces ac ross  which a l l  the magnetohydrodynamic 

quantities are continuous but the f i r s t  derivatives of a t  least  one of these 

quantities is discontinuous, we obtain various speeds of propagation of these 

sur faces .  We then compare our results with the known results in this field. 

Fur thermore ,  by taking a suitable metr ic  we give a space-time representatian 

of our  anii.lysis. 

that known for  non-relativistic magnetohydrodynamics. 

tively the present  results a r e  s imilar  to the ones known for  the non-relativistic 

ca se .  In fact ,  we have three kinds of waves - slow, intermediate and fas t .  

The possibility of any of these waves exceeding the speed of light is excluded 

since we have taken the wave normals to be space l ike.  

By 

This enables u s  to compare the present  discussion with 

We find that quali ta- 

The description of the propagation of these wave fronts is made more. 

quantitative by employing the classical  theory of r ay  optics. 

the wave front a s  the surface of {(x, t)  = 0, the equations which give various 

wave speeds become firs t-order par t ia l  differential equations in  the function 

f .  

curves rather  than cones.  These curves a r e  called bicharacterist ica car 

By representing 

These equations, in turn,  have character is t ics  which a r e  described 3.8 

rays .  

direction field of rays along which the wave fronts propagate. 

equations for  these rays .  

F o r  each category of waves - slow, intermediate or  fas t  - we have E. 

We derive the 

F rom the discussion of these equations i t  follows 
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that  the bicharacterist ics corresponding to the intermediate waves always 

lie in the plane determined by the velocity and magnetic 4 - vfectors.  

The geometrical  shape of the wave fronts can be analysed with the 

However, it is s impler  to discuss help of the equations for  the rays.  

the geometry of wave fronts with the help of the surfaces of wave normals .  

W e  derive the equations for these surfaces fo r  a l l  the three waves.  I t  

turns out that, a s  in the non-relativistic case,  the surface of the wave 

normals  for  the intermediate wave consist  of two planes.  

surfaces  f o r  slow and fast waves a r e  two distinct nappes of a conoid; the 

surface of wave normals  f o r  the intermediate wave always touches this conoid. 

The corresponding 

2 Fundamental equations 

Let gAB denote the metr ic  components of an Einstein-Riemann space 

( re fer red  to  hereaf ter  a s  E - R  space) and le t  WA stand f o r  the covariant 

components of the unit time-like velocity 4-vector W .  The capital Roman - 
indices have the range 0, 1, 2 ,  3, and a r e  subject to the summation con- 

vention over this range. Thus 

gAB WA WB = 1 . 

The momentum-energy tensor  with components T i s  composed of two AB 
parts T Y i  and TAB (e) . 

The material pa r t  T (m) AB i s  given as 

where p is the mass-energy density, p is the p re s su re  and c i s  the velocity 

of light in vacuum. The Components TAB have the dimensions of energy.  

The electromagnetic par t  T (e)  AB is defined fo r  infinitely conducting 
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fluids in te rms  of the electromagnetic skew-symmetric tensor with 

components HAB, a8 

where  the constant p is the magnetic permeability. 

the magnetic 4-vector h with components hA [ 10 3: 
Let us now introduce 

-r 

( 2 . 4 )  

* 
AB where the components H 

by the formulae 

of the dual electromagnetic tensor a r e  defined 

a r e  the components of the ci ABCD and s tomary  permi tation tensor .  

In te rms  of these skew-symmetric tensors the Maxwell equations become 

where JB a r e  the components of the current  4-vector J and  the semicolon 

denotes the covgriant differentiation formed on g 

with components e 

- 
The electric 4-vector AB * 

is defined as A 

e~ = H~~ WB. 

In view of the skew-symmetry of HAB, i t  readily follows that both the 

electromagnetic 4-vectors a r e  orthogonal to W: - 

h, WA = eA W A =  0 .  

Fu r the rmore  their  components in a r e s t  f rame i . e .  Wo = 1, Wi = 0, 
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coincide with the magnetic and electr ic  3 -vectors with components 

Hi and Ei. In these expressions as well a s  in the sequel, the Latin 

indices wil l  have the range 1, 2 ,  3 .  F o r  infinitely conducting fluids, 

it follows f rom Ohm's law (for a cr i t ical  discussion see Coburn [2] 

and Reichel [ 111 that eA = 0. Therefore the relation ( 2 .  7) becomes 

HBA WB = 0. 

This means that the 4-vector W l ies in the null domain of the skew- 

symmetr ic  matr ix  ( (€4 

- 
) ) .  Hence the rank of this matr ix  is less  than AB 

four. But an antisymmetric matrix has always an even rank.  Thus the 

raqk of thie matr ix  is two. 

f o l l ~ w s  that the matrix defined by the components H i B  has a l so  rank 

t w ~  and that the 4-vector W lies in  its non-null domain. 

eince HAB h 

matrix. 

non-null domain of the skew-symmetric matr ix  ( (HAB) ) of rank two, w e  

can decompose i t  into the bivector form [ 131 

From the definition of the dual tensor it 
.b 

Fur thermore  - 
-.* B # 0, the vector h a l so  lies in the non-null domain of this - 

Since we have two mutually orthogonal vectors lying in the 
* 

where the coefficient IJ. is accounted f o r  by the relation ( 2 . 4 ) .  

Hence 

C D  W h .  - 
H~~ - P ~ A B C D  

(2 .10 )  

(2 .11)  

Substituting (2 .  10) into the f i r s t  of the equations (2.  6 )  we obtain an  equation 

f9r the determination of the vector h: - 
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( 2 .  12) 

Once we have found h, we recover the quantities HAB and J f rom the 

equations (2 .12)  and the second equation ( 2 . 6 ) .  

by the equation (2.3) we observe t h e  following simple relation 

3 - 
To evaluate a s  given AB 

where we have used the fact  that h , being orthogonal to the time-like 

vector W, is a space-like 4-vector. 

- 
Similarly - 

Substituting (2.13) and (2. 14) into the equation ( 2 . 3 ) ,  we have 

which is a symmetr ic  tensor .  Let us observe in passing that 

( e )  AB = O = h A T  (e )  A'B 
wA T; B ;B 

(2 .13)  

( 2 .  14) 

( 2 .  15) 

( 2 .  16) 

AB W e  a r e  now in a position to wri te  down the complete value of T 

in terms of t w o  unknown vectors W and h: - - 

( 2 .  17) 

TAB = c 2  p WAWB - ?? gAB ' 
The Einstein field equations of general relativity imply that 

AB T i B  = 0 .  (2 .18)  

When we substitute ( 2 .  17) into (2.18) we get the required par t ia l  differential 

equations. 
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3 .  Definitive System of equations 

Let  us collect a l l  the necessary equations and put them in the 

f o r m  needed in  the subsequent analysis. 

( 2 .  l) ,  when differentiated yields 

In that connection the relat ion 

A w wA;B = 0 .  

Similarly f rom the f i r s t  relation (2 .8)  we get 

A 
.f W ; B  hA = 0 .  A 

h ~ ; ~  

The field equations (2.12) a r e  

B A  A B  B A  A B  W h i B  t h W;B - h W ; B  - W h ; B  = 0 .  ( 3 . 3 )  

The conservation law (2.18) becomes 

gAB - 2p(WAWB- f gAB)hchC - ',B ;B 

The thermodynamic relation, required f o r  the present  analysis,  expresses  

the condition that [ 1 5 ] 

A wA - a2 p A~ = 0, A 1 

where 

Y E ,  
P 

( 3 . 5 )  

and Y is a material constant. As we shall  soon see that difference in 
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various character is t ic  relations, obtained thus f a r ,  is accounted for  by 

the difference in the thermodynamic relat ions,  

(3.2), we have now ten equations (we count ( 3 .  1) as one equation, derived 

aci it is f r o m  a sca l a r  equation ( 2 .  1))in ten unknowns W,  h, p and p .  

Except for  the identity 

- -  

4.  Sonic die turbance s 

We consider a weak disturbance whose position can be represented 

by a three -dimensional time -like hype rsurface 

the E - R  space.  Any time section t = constant, of C will be a two 

dimensional surface S( t) , called the 2 -wave, in the three -dimensional 

Riemann space R ( t ) .  Let  NA be the components of the unit space-like 

4-vector N which is normal  to  2 ( t ) .  Fur thermore  le t  the bracket  [ F ] 

stand for  the jump of F ac roes  the sonic discontinuity. 

(t),  called a 3 -wave, in 

-c 

We assume that 

be shown that 

(4.2) 

where 6F is the etrength of the discontinuity. 

components of the met r ic  tensor and their  first derivatives a r e  continuous, 

it follows that the jump in  the covariant derivatives of a quantity is equal 

to the jump in the ordinary derivatives.  

of the components of the met r ic  tensor  a r e  a l so  continuous, i t  follows f r o m  

the Einstein field equation that the quantities T 

wave front.  

Moreover,  since the 

Also since the second derivatives 

AB a r e  continuous ac ross  the 

Applying the jump condition ( 4 . 2 )  to the sys tem of equations ( 3 .  1) 

- ( 3 .  5), there  resul t  the relations 
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(4.3) 
A w 6WA = o ;  

( 4 . 4 )  

(4.5) 

W A 6hA = - hA6W A .  , 

L6hA f hANB6WB - hN6WA - W A NB6hB= 0; 

c 2 L W A 6 p  t (c2p t p)hI2) (WANB6WB t L6WA) - NA6p - p (2LWA - NA)h C 6hC 

- p( 6h\ t hAN B 6hB)= 0, (4 6 )  

and 

A A where L = W NA, and hN = h N A .  

5 .  Alfven waves. 

Le t  TA stand f o r  the components of the tangent 4-vector T to the - 
wave front.  We shall  take such a tangential direction T that it is orthogonal 

to  the 3-base N ,  W,  and - h .  

repeated index A, the following two relations resul t  

- 
If we multiply (4 .5 )  and ( 4 . 6 )  by T 2 n d  sum on the - -  

LShT - hNbWT = 0, (5.1) 

A A where 6hT = 6h TA and 6WT = 6W TA. 

n9n-trivial solution for  (6hT, 6 W T ) ,  i f  we have 

These two equations will give a 

= O .  ( 5 -  3 )  
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L e t  us now define 

then (5.3) gives 

(5.4) 

(5.5) 

This relation, as we shal l  soon see ,  leads to the Alfven wave of non- 

relativist ic magnetohydrodynamics. It is independent of the thermo- 

dynamics in the above analysis .  

as  well as compressible fluids. 

The same relation holds for  incompressible 

6 .  Fast and Slow Waves. 
- 

We start with the field equation ( 4 , 5 ) .  Multiplying it by WA , 

summing on the Sepeated index A, and using (4.3) and (4.4), we derive 

(6 .1)  
A = - LhA6W . LWA 6hA = NBdh B 

Similar ly  i f  we multiply ( 4 . 5 )  by hAl  and sum on A, i t  yields 

Le t  us now replace bp with a' 6 p in the equation (4.6), as implied 

by the relation (4.7);  multiply the resulting equation by h 

the other identities as derived above, i t  l e a d s t o  the relation: 

use some of A; 

A 1 a2 6 P  
h N p  ' hA6W = - - 

c 2  
( 6 . 3 )  

Similar ly  i f  we multiply the equation (4.6) with W - and - N 

index A, we get 

and sum on the 
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Substituting f rom (6 .3 )  and (6 .4 )  into (6.5), we readily obtain 

((2a2-cZ)p.c8 L4 - ((aZ-c2)!p]h12 - a2c2p)L2 - 

But 6p # 0; as such ( 6 . 6 )  gives 

( c2 -2a2)pc  L -{ fca -a2 )p /h l z  .f t a 2 p h A  = 0. 

In t e rms  of V, as defined by (5 .4) ,  the above relation becomes 

I- (1- -  2a2 ) p  V' - { ( l -  C) p]h12 t a 2 p  Vz t a2ph& = O 
C Z  C 2  

When hA = 0,  the equation ( 6 . 8 )  reduces to the one found by Thomas for  

uncharged fluids. 

7 .  Comparison with known results.  

If we take [14]  

where po and e a r e  the r e s t  density and the r e s t  internal energy respectively, 

the relations (5.3) and ( 5 .  7),  agree with those found by Coburn [ 2 1 .  
To get the corresponding character is t ic  equations a s  derived by 

Bruhat [ 53, we s e t  

n2 

P = P + P s  . c  = 1, 

and takq the thermodynamic relation I which gives 



The modification in our analysis s t a r t s  with the equation (3 .4 ) .  It becomes 

If we go through the same  algebraic steps a s  with (3 .4)  and the related 

sys tem of equations, the characterist ic relations corresponding to (5 .3)  

and (6.7) becorpe 

% 

L2 (p  + p +p Ih 1’ ) = p h b  = 0 ,  

These agree  with the ones found by Bruhat. 

Finally, i r  w e  take the relation (7.1)  and assume the thermo- 

dynamic equation which leads to 

The relation (5.3) is unchanged while (6 .7)  is modified into: 

( 5 . 3 ) ‘  

( 6  . 7)’’ 
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-{(poai t pIhl2) (cz  t e t p/po) L2 t a: p h& = O ,  1 
which agrees  with the resul t  found by Saini [12] and Giere [ 6 ] . 

( 6 .  7)” 

8 .  A space-time representation. 

A coordinate sys tem can be introduced in the E - R  space for  which 

the square of the element of length d s 2 ,  has the fo rm 

ds2 = c2  dt2 - a. .dxidJ ,  
1J 

where a 

These coefficients, in general, depend on the coordinate t, as  well a s  

the spatial coqrdinates x. Relative to this coordinate system the 

velocity 4 -vec to r be c ome s 

a r e  the coefficients of a positive definite quadratic form.  i j  

- 

-V  
C i ; w. = - , 

cd  l -v2 /c2  1 d l - V Z / C Z  
wo - 

i wo = 1 i V ; w =  ? 

cd 1-v2/c2 cd  l - V Z / C 2  

i where vi and v a r e  the covariant and contravariant components of the 
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b 

velocity vector in  the three -dimensional Riemann space R (  t )  whose 

met r ic  is defined by the above quantities a . . ( t ,x ) ,  and v is the magnitude 

of this velocity. 
1J 

The electromagnetic 4-vector - h is now given a s  

i 
(HiV 1 Hi (,E x_v)i 

d 1 - d C 2  dl-v2/c2 pcd 1 .-v2ic2 ' 
, h i = -  - - - bo - - 

ho 7 .. , h i =  Hi + (E x d  
c 2 d  1 -v2 I C 2  dl-v2/c2 pcd 1 -v2 I C 2  

Similarly the normal  4-vector N has the decomposition - 
b 1 - ; Ni = 

No - d l - G 2 / c 2  m 
i i n 

; N =  No = J 

G 

c q  1 -G2 /c2  d 1 -G2 / c2  

i where ni and n a r e  the covariant and contravariant components of the 

unit normal to S( t )  in the space R ( t )  and G is the normal coordinate 

velocity of propagation of S(t) in R ( t ) .  The direction of N is chosen, 

fo r  definiteness, so that the associated vector n is directed into the - 
region of R ( t )  into which the surface S(t) is propagated; then the velocity 

G is positive. 

The qkantities L, V, hN and I hl become 

G - vn A L = N  W A =  ¶ 

c i  1 -G2 / c 2  d 1 -v2 / c 2  
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n G - v  
V = c L =  

d 1-GZ/c2 d 1 -vz / c 2  
9 

i (E x v)in 1 - -  
tL 

T -  

n A (Hivi)G H 
h N = h A N  

9 

c2dl-Gz/cz d l - v 2 / c 2  d 1-G2/cZ c d l - v 2 / c 2  d l - G 2 / c 2  

and 

F r o m  ( 8 . 6 ) ,  (8. 7) and (8.8)  we observe the important fact  that when 

L Y< 1, - G << 1, 
C C 

we have 

F r o m  ( 7 . 1 )  we observe that 

( 8 . 9 )  

(8 .  10) 

(8 . l l )  

and therefore  a -U the velocity of sound in non-relativistic uncharged 

fluids . 
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When we make theee substitutions in the characterist ic relations 

( 5 , 3 )  and (6 .7) ,  they become in the non-relativistic limit 

and 

P,u' - (pR2 f a 2 p  .)U2 t a 2 p H i  = 0.  

(8  .12) 

(8 .  13) 

In fact  they become obvious i f  we start with the equations (5 .5 )  and (6.81, 

inetead. 

non-relativistic magnetohydrodynamics [ 8 1  . 
of (5 .3 ) ' ,  (6.7) '  and (6.7)". 

are similar to those in ncm-relativistic case .  

mediate and fast waves. 

comparable with the velocity of light but none can exceed that velocity. 

This follows f r o m  the Darmois-Lichnerowicz formula [ 93 fo r  the 

speed u of wave propagation: 

These two relations agree completely with those obtained in 

The same  is of course t rue  

Qualitatively the results in the present  case  

There are slow, inter-  

The velocities of these waves a r e ,  however, 

A i W NA 
C u2 = 
W*N* - N ~ N ~  

(8.  14) 

Since NANA = - 1, we get  that u c . 
Various other known results in connection with the character is t ics  

can be deduced f rom the foregoing ones as special  cases .  

9. Bicharac te ris t ics 
< 

The analysis in this section concerns the theory of rays a s  based on 

the character is t ic  relations ( 5 . 3 )  and ( 6 . 7 ) .  

have an equation: 

Let tne hypersurface Z ( t )  

f(x,t) = 0, 
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then the components NA a r e  defined as  

In t e r m s  of f 

(6 .7 )  as 

we can wr i te  the character is t ic  relations (5 .3 )  and 
aA 

A A 
F(flA) = fW f , A ) 2  (czp t klhl2) - p(h f ) 2  = 0 ,  $ A  (9 .3 )  

(9 .4)  

AB We have taken advantage of tne relation lgABf f 1 = ( -g  f f ) .  The 
, A  sB $ A  $B 

equations ( 9 . 3 )  and (9 .4 )  a r e  f i r s t  o rder  par t ia l  differential equations 

f o r  determining the integral  surface f .  This integral  surface i s  spanned 

by character is t ic  rays .  These rays a r e  called the bicharacter is t ics  for  

the original equations arld a r e  determined by the ordinary differential 

equations 

dx A a F  - = -  (9 .5 )  

with s defined a s  a pa rame te r  along the b icharac te r i s t ics .  

f r o m  ( 9 . 3 )  and (9.4)  into (9.5)  leads to 

Substituting 
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? 

t’ 

*, 

I . 

( 9 . 7 )  

The corresponding differential equations for  rays based on (5.3)’, 

(6 .7)’  and (6.7)”, can be read off f rom the above relations. 

qualitative discussion is tne same for  all such r ays .  

The following 

F r o m  (9.6) we observe that b lies in the plane of the orthogonal 

will a l so  lie in  the same plane if N does.  
4 1 )  

4-vectors W and h. The ray  b 

W e  now set out to investigate that possibility. 

- - 4 ’1 - 

We have h/+lhl , as  a unit space-like vector and W,  as a unit t ime- 

Let us introduce two new mutually orthogonal 4-vectors 

- - 
like vector.  

Y and Z, which a r e  orthogonal to the 2-base determined by W and h /  1 h I .  
Hence both Y and Z a r e  space-like and span the null domain of H 

and therefore they span the non-null domain of dB. 
pose HAB, in terms of YA and ZA, getting (in view of the relations (2.  10)  

and (2.11)):  

’c - 
’KAB - - 

Thus we can decom- 

( 9 . 8 )  
A B  HAB = p Ih 1 (YAZB - Z Y ) .  

The vectors - -  W, h/l h 1, - Y and - Z form a 4-tuple of mutually 

orthagonal unit vectors;  W is time-like and (h/ - I h I 
W e  can represent  the components N 

- -  Y ,  Z) a r e  space-like. 

as A 

NA = AWA t B h A / l h l  t C YA t D ZA. ( 9 . 9 )  
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A Since NAN = -1, this gives 

Also 

The char9cterist ic relations ( 5 . 3 )  and (6 .7 )  become 

(p lhI2  t czp )Aa - plhI2 B2 = 0, 

and 

(2 -2a2 )c  'pA4 - c'-a' )p I h 1' t a2 czp A' +az p .I h 12B ' =O . I- 

(9.10) 

(9.11) 

(9 .12)  

(9 .  13) 

If the normal  N is t o  lie in  the 2-base deterrrLined by W and h - - - 
then f rom (9.9)  and (9.  10) it follows that 

C = D = O ,  (9.  14) 

and 

(9.  15) A' - B 2  = -1 . 

Thus A and B satisfy the equation f0r .a  hyperbola a s  given by (9 .  15) .  

The intersection of this hyperbola with the curve given by the equation 

(9.12) yields 
1 - 

1 
A = (p /c  2 2  p)  lh l ;  B = f {l t (9 .16)  

$irnilarly the intersection of this hyperbola with the curve given by 

(9.131, leads to 
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( 9 .  17) 

and the same  roots a s  given by the relation (9.17) for  Alfven waves. 

fact  the equation ( 9 . 1 2 )  becomes a factor  of (9.13) when B2 = 1 t A 2 .  

From ( 9 . 1 6 )  it follows that there exist two wave normals which l ie  in the 

base @,$ - h)  provided cz  > 2 a 2 .  The corresponding condition fo r  Bruhat 's  

analysis is 1> 2 . 

In 

Finally we observe from (9 .  l o ) ,  ( 9 . 1 2 )  and (9.13) that A = B = 0;  

C2 t D2 = 1 ,  satisfy these equations. Thus there  a r e  a' characterist ic 

hypersurfaces such that W and - h lie on their  local tangent hyperplanes. - 

10. Geometrv of the wave fronts. 

Le t  us set 

(10.1) 

The equations ( 9 . 3 )  and ( 9 . 4 )  then become 

(10.3) 

The equation F(XA) = 0, represents,  f o r  fixed (x, t) ,  a surface in 

X-space called the surface of wave normals .  

frame a t  the point (x,t) such that, goo = 1, g ' = - 6'. Let  us a l so  

Let us take the Lorentz 

define a 4-tuple of mutually orthogonal vectors %,el, - e 2 , 2 3  at that point. 

For e and el we take W - and - h/lhl respectively. The equation (10.2) 

which gives the wave normal surface f o r  Alfven waves becomes 

- 0  - 
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n 

1 
m 

Factoring the right member of the equation (10.4) we obtain two planes 

in  the E-R space.  

The equatian (10.3), similarly, gives 

(10.5)  

which is tne equation f o r  a conoid. 

straight line shows that it is composed of two distinct nappes Cf (for 

fast wave). and Cs (for slow wave). 

The light cone is inter ior  to  C 

surface of the wave normals  f o r  the Alfven wave, always touch the conoid 

given by equation (10.5) .  

surfaces is thus the same as  in the case  of non-relativistic magnetohydro- 

dynamics. Since the diagram of wave fronts can be constructed f r o m  the 

surfaces  of wave normals ,  by a simple geometrical device, it follows 

that all the known geometrical facts about the magnetohydrodynamic 

wave fronts a r e  applicable to the present  case [ 8  1 . 

The intersection of this conoid with a 

The nappe C is inter ior  and is convex. f 

The two planes, which comprise the f '  

The geometrical  shape of these wave normal  

Finally we observe that when c 2  = 2 a 2 ,  the equation (10.3)  has a 

factor  

gCD XCXD = 0, (10.6)  

which is tne equation of the light cone. 

with the nappe C of the f a s t  wave. 

In this case the light cone coincides 

f 
This work was sponsored in pa r t  by the National Science Foundation 

under Grant No.  GP-4026 and in pa r t  by NASA Grant No. NsG-134-61 

with the Pennsylvania State University. 
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